Preliminary communication

Stereocontrolled synthesis of GD₂ *

Yuji Matsuzaki ^a, Shigeki Nunomura ^a, Yukishige Ito ^a, Mamoru Sugimoto ^b, Yoshiaki Nakahara ^a and Tomoya Ogawa ^{a,c}

(Received November 2nd, 1992; accepted in revised form December 28th, 1992)

Ganglioside GD_2 (1) was first isolated in 1964 from human brain² and was later chemically characterized³. GD_2 was then identified as a human neuroectodermal tumor antigen OFA-I-2 (ref 4) as well as a human melanoma antigen Leo Mel 3 (ref 5). As part of our synthetic studies⁶ on gangliosides, we describe herein a first synthesis of GD_2 . The overall synthetic strategy is depicted in Scheme 1. The putative glycopentaosyl donor 2 that should be coupled with ceramide derivative 3 (ref 7) was expected to be synthesized from GalpNAc donor 4, $Neup5Ac-\alpha-(2 \rightarrow 8)-Neup5Ac$ donor 5 and lactose derivative 6.

The disodium salt of Neu p5Ac- α -(2 \rightarrow 8)-Neu p5Ac, readily obtainable from colomic acid, was converted into thioglycoside 5 {[α]_D -37° (c 0.5); the values of [α]_D and δ _{H,C} were measured for solutions in CHCl₃ and CDCl₃ at 23 \pm 3°C, respectively, unless noted otherwise; R_f 0.31 in 1:1 CHCl₃-THF; δ _H 3.849 and 3.800 (2 s, 2 × OMc), 2.708 and 2.536 (2 dd, J 4.5 and 13.0 Hz, 2 × H-3_{eq})} in three steps (44% overall yield) via 7 by the following reactions: (i) MeI in Me₂SO, 3 h at 25°C, (ii) Ac₂O and DMAP in pyridine, and (iii) MeSSnBu₃ and SnCl₄ in (ClCH₂)₂ (ref 9). Peracetate 7 was obtained as a 5:1 mixture of β and α acetates {7(β), [α]_D -18° (c 0.5); R_f 0.25 in 20:1 CHCl₃-MeOH; δ _H 5.348 and 4.886 (2 ddd, 2 × H-5). 7(a), R_f 0.30 in 20:1 CHCl₃-MeOH; δ _H 4.983 and 4.886 (2 ddd, 2 × H-5)). Glycosylation of 6 (ref 10) with 5 (0.5 equiv.) in MeCN (ref 11) in the presence of PhSeOTf (ref 12) at -40°C afforded a 27% yield of the α -(2 \rightarrow 3) linked compound 8 {[α]_D -6.1° (c 0.8); R_f 0.42 in 20:1 CHCl₃-MeOH}, as well as a 9% yield of its β isomer {[α]_D -14° (c 0.4); R_f 0.35}. The stereochemistry of 8 and the β isomer was deduced from ¹H NMR data, which contained two signals

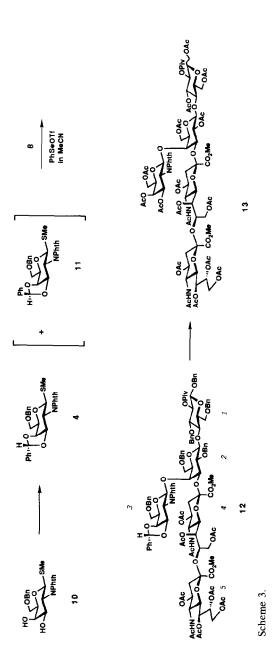
^a The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 (Japan)

^b Central Research Laboratory, MECT Co., Kitano, Tokorozawa-shi, Saitama 359 (Japan)

^c Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 (Japan)

Correspondence to: Dr. T. Ogawa, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 Japan.

^{*} Part 94 in the series, "Synthetic Studies on Cell-Surface Glycans". For Part 93, see ref 1.


Scheme 1.

3.0 Hz.

for H-4⁴ and H-4⁵ at δ 4.931 and 4.886 as two multiplets for compound **8**, while the corresponding signals at 5.662 and 4.925 were for the β isomer. The regiochemistry of newly introduced glycosidic linkage of **8** was deduced by converting **8** into acetate **9** {[α]_D -21° (c 0.1); R_f 0.37 in 5:3 Me₂CO-hexane}, which showed in the ¹H NMR spectrum a deshielded signal for H-4² at d 5.127 as a doublet of J

Treatment of thioglycoside **10** (ref 13) with PhCH(OMe)₂ and TsOH·H₂O in MeCN gave **4** {50%; $[\alpha]_D$ +49° (c 1.2); R_f 0.40 in 2:1 hexane–EtOAc}, and the *endo* isomer **11** {(37%) $[\alpha]_D$ +91° (c 0.7); R_f 0.32}, which showed in the ¹H NMR

Scheme 2.

spectrum signals for the benzylidene proton at d 6.323 and 5.927, respectively, in agreement with the structural assignment ¹⁴. PhSeOTf-promoted glycosylation of 8 with *exo* isomer 4 in MeCN at -38° C afforded an 89% yield of $12 \{ [\alpha]_{D} + 6.7^{\circ} (c 0.6); R_f 0.43 \text{ in } 20:1 \text{ CHCl}_3\text{-MeOH} \}$; however, with the *endo* isomer 11, the glycosyl acceptor 8 was quantitatively recovered under the same reaction conditions. The anomeric configuration of newly introduced Gal *p* NAc residue of 12 was confirmed by ¹H NMR spectroscopy that revealed a signal for H-1³ at d 5.306 as a doublet of *J* 8.8 Hz. Conversion of 12 into the completely acylated glycopentaose 13 was carried out in two steps in 65% overall yield: (i) 20% Pd(OH)₂ and H₂ in 10:5:3 MeOH-EtOAc-H₂O and (ii) Ac₂O and DMAP in pyridine. Compound 13 was obtained as a 1:1 mixture of α and β anomers at C-1¹ [R_f 0.51 in 16:1 CHCl₃-MeOH; δ_H 3.872 and 3.814 (2 s, $2 \times$ OMe), 5.667 (d, 8.1 Hz, H-1¹ β) and

Compound 13 was then treated with piperidinium acetate ¹⁵ in THF at 48°C to chemoselectively cleave the anomeric acetate to give a 49% yield of hemiacetal 14 [R_f 0.40 in 2:1 Me₂CO-toluene], which was immediately treated with CCl₃CN

6.247 (d, 3.7 Hz, H-1 $^{1}\alpha$)].

(ref 16) and DBU in (ClCH₂)₂ to give trichloroacetimidate **15** in 93% yield [R_f 0.48 in 2:1 Me₂CO-toluene; δ_H 6.483 (d, 3.6 Hz, H-1¹), 3.875 and 3.819 (2 s, 2 × OMe), 2.929 and 2.709 (2 dd, H-3⁴ and H-3⁵)].

Crucial coupling between 15 and 3 was achieved in CHCl₃ in the presence of powdered 4A molecular sieves and Me₃SiOTf at -23°C (ref 17) to give a 48% yield of the desired product 16, $\{ [\alpha]_D + 19.0^\circ (c \ 0.6); R_f \ 0.39 \text{ in } 6:5 \text{ Me}_2\text{CO} - 19.0^\circ (c \ 0.6) \}$ toluene). The structure of 16 was confirmed by ¹H NMR spectroscopy, which showed signals for two CO₂Me groups at d 3.822 and 3.868 as two singlets, as well as three anomeric protons at d 5.345, 4.380, and 4.290 for H-1³, H-1¹, and H-1² as three doublets of J 8.4, 8.1, and 8.1 Hz, respectively. Deprotection of 16 to give 1 was executed in four steps via compound 17. Compound 16 was refluxed for 2.5 h with a large excess of LiI in dry pyridine¹⁸. Purification of the product by gel filtration through Sephadex LH-20 in 1:1 CHCl₃-MeOH gave an 83% yield of the diacid dilithium salt 17 [R_f 0.27 in 35:10:1 CHCl₃-MeOH-AcOH]. Subsequent treatment of 17 with (i) 40% NH₂Me in MeOH¹⁹, (ii) Ac₂O in MeOH, and (iii) NaOH in aq MeOH, afforded the target compound 1 { $[\alpha]_D$ - 3.3° (c 0.2); R_f 0.36 in 6:4:1 CHCl₃-MeOH-H₂O; ESIMS $(M + O)^-$ 1803) in 57% overall yield, after purification of the crude product by preparative TLC in 6:4:1 CHCl₃-MeOH-H₂O, and then by gel filtration through Sephadex LH-20 in 6:4:1 CHCl₃-MeOH- H_2O . ¹H NMR (in 99:1 Me₂SO- d_6 -D₂O, 60°C) of synthetic 1 was found to be indentical with that of the natural sample.

In summary, a stereocontrolled synthetic route to the ganglioside GD_2 was exploited for the first time by use of glycopentaosyl trichloracetimidate 15 as a key glycosyl donor.

ACKNOWLEDGMENTS

¹HNMR data for a natural sample of 1 was kindly provided by Dr. Fuyuhiko Inagaki of Tokyo Metropolitan Institute of Medical Sciences. A part of this work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and also by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Mr. Kazushige Fujikura for NMR, Mr. Tadashi Ii and Dr. Yoko Ohashi for ESIMS, and Ms. Mutsuko Yoshida and her staff for elemental analyses. We also thank Ms. Akemi Takahashi for technical assistance.

REFERENCES

- 1 Y. Matsuzaki, Y. Ito, Y. Nakahara, and T. Ogawa, Tetrahedron Lett., in press.
- R. Kuhn and H. Wiegandt, Z. Naturforsch, 19b (1964) 256-257; E. Klenk and M. Naoi, Hoppe Seylers Z. Physiol. Chem., 349 (1968) 288-292.
- 3 L. Svennerholm and M.-T. Vanier, Adv. Exp. Med. Biol., 19 (1972) 499-514; N. F. Avrova, Y.-T. Li, and E. L. Obukhova, J. Neurochem., 32 (1979) 1807-1815.

- 4 L D. Cahan, R. F. Irie, R. Singh, A. Cassidenti, and J. C. Paulson, Proc. Natl. Acad. Sci, U.S.A., 79 (1982) 7029–7633.
- 5 S. Fukuta, J. A. Werkmeister, G. F. Burns, V. Ginsburg, and J. L. Magnani, J. Biol. Chem., 262 (1987) 4800-4803.
- 6 M. Sugimoto and T. Ogawa, Glycoconjugate J., 2 (1985) 5-9.
- K. Koike, Y. Nakahara, and T. Ogawa, Glycoconjugate J., 1 (1984) 107–109; K. Koike, M. Numata,
 M. Sugimoto, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 158 (1986) 113–123.
- 8 R. Roy and R. A. Pon, Glycoconjugate J., 7 (1990) 3-12.
- 9 T. Ogawa and M. Matsui, Carbohydr. Res., 53 (1977) c17-c21.
- 10 Y. Ito, M. Numata, M. Sugimoto, and T. Ogawa, J. Am. Chem. Soc., 111 (1989) 8508-8510.
- 11 T. Murase, H. Ishida, M. Kiso, and A. Hasegawa, Carbohydr. Res., 184 (1988) c1-c4.
- 12 Y. Ito and T. Ogawa, Carbohydr. Res., 202 (1990) 165-175.
- 13 Y. Ito, S. Nunomura, S. Shibayama, and T. Ogawa, J. Org. Chem., 57 (1992) 1821-1831.
- 14 A. Neszmelyi, A. Liptak, and P. Nanasi, Carbohydr. Res., 58 (1977) c7-c9.
- 15 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31 (1990) 1597-1600.
- 16 R. R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19 (1980) 731-732.
- 17 T. Ogawa, K. Beppu, and S. Nakabayashi, Carbohydr. Res., 93 (1981) c6-c9.
- 18 F. Taschner and B. Liberek, *Rocz. Chem.*, 30 (1956) 323–325; *Chem. Abstr.*, 51 (1957) 1039d; F. Elsinger, J. Schreiber, and A. Eschenmoser, *Helv. Chim. Acta*, 43 (1960) 113–118; M. Sugimoto, M. Numata, K. Koike, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 156 (1988) c1–c5.
- 19 M. S. Motawia, J. Wengel, A. E. S. Abdel-Megid, and E. B. Pedersen, Synthesis, (1989) 384-387.